Квадратное уравнение в APL
В этом примере определяется именованная D-функция, которая принимает коэффициенты уравнения как один параметр — массив из трех элементов и выводит решение уравнения. Вначале параметр разбирается на отдельные коэффициенты, и им присваиваются имена (N⊃⍵
выбирает N-ый элемент массива). Затем выполняются проверки первого коэффициента и дискриминанта, по которым функция может вернуть нетипичное решение. Наконец, оба случая ненулевого дискриминанта обрабатываются одним и тем же кодом благодаря тому, что в APL есть встроенные комплексные числа. Например, вызов функции
solve 1 0 2
возвращает следующие значения:
0J1.4142135623730951 0J¯1.4142135623730951
(J
— разделитель действительной и мнимой частей числа, ¯
— “высокий” минус, использующийся для ввода/вывода отрицательных чисел).
Отметим, что данный код является нетипичным для APL из-за использования условного ветвления, а также из-за того, что механизм использования аргумента ограничивает диапазон его возможных значений до одномерного массива из трех элементов.
solve←{A←0⊃⍵ ⋄ B←1⊃⍵ ⋄ C←2⊃⍵ ⋄ A=0:'Not a quadratic equation.' ⋄ D←(B*2)-4×A×C ⋄ D=0:-0.5×B÷A ⋄ ((-B-D*0.5), -B+D*0.5)×0.5÷A}
Комментарии
]]>blog comments powered by Disqus
]]>